Pig liver carnitine palmitoyltransferase. Chimera studies show that both the N- and C-terminal regions of the enzyme are important for the unusual high malonyl-CoA sensitivity.

نویسندگان

  • Carine Nicot
  • Joana Relat
  • Gebre Woldegiorgis
  • Diego Haro
  • Pedro F Marrero
چکیده

Pig and rat liver carnitine palmitoyltransferase I (L-CPTI) share common K(m) values for palmitoyl-CoA and carnitine. However, they differ widely in their sensitivity to malonyl-CoA inhibition. Thus, pig l-CPTI has an IC(50) for malonyl-CoA of 141 nm, while that of rat L-CPTI is 2 microm. Using chimeras between rat L-CPTI and pig L-CPTI, we show that the entire C-terminal region behaves as a single domain, which dictates the overall malonyl-CoA sensitivity of this enzyme. The degree of malonyl-CoA sensitivity is determined by the structure adopted by this domain. Using deletion mutation analysis, we show that malonyl-CoA sensitivity also depends on the interaction of this single domain with the first 18 N-terminal amino acid residues. We conclude that pig and rat L-CPTI have different malonyl-CoA sensitivity, because the first 18 N-terminal amino acid residues interact differently with the C-terminal domain. This is the first study that describes how interactions between the C- and N-terminal regions can determine the malonyl-CoA sensitivity of L-CPTI enzymes using active C-terminal chimeras.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Demonstration of N- and C-terminal domain intramolecular interactions in rat liver carnitine palmitoyltransferase 1 that determine its degree of malonyl-CoA sensitivity.

We have previously proposed that changes in malonyl-CoA sensitivity of rat L-CPT1 (liver carnitine palmitoyltransferase 1) might occur through modulation of interactions between its cytosolic N- and C-terminal domains. By using a cross-linking strategy based on the trypsin-resistant folded state of L-CPT1, we have now shown the existence of such N-C (N- and C-terminal domain) intramolecular int...

متن کامل

Roles of the N- and C-terminal domains of carnitine palmitoyltransferase I isoforms in malonyl-CoA sensitivity of the enzymes: insights from expression of chimaeric proteins and mutation of conserved histidine residues.

The mitochondrial outer membrane enzyme carnitine palmitoyltransferase I (CPT I) plays a major role in the regulation of fatty acid entry into the mitochondrial matrix for beta-oxidation by virtue of its inhibition by malonyl-CoA. Two isoforms of CPT I, the liver type (L) and muscle type (M), have been identified, the latter being 100 times more sensitive to malonyl-CoA and having a much higher...

متن کامل

Structure-function relationships of the liver and muscle isoforms of carnitine palmitoyltransferase I.

Elucidation of the membrane topology of carnitine palmitoyltransferase (CPT) I showed that the extreme N-terminus is involved in determining the sensitivity of the liver (L) isoform to malonyl-CoA and suggested that interaction between the two cytosolic segments of the CPT I molecule determines the kinetic characteristics of the enzyme. Work with chimaeric liver/muscle-isoform (L/M) proteins co...

متن کامل

Differences in the sensitivity of carnitine palmitoyltransferase to inhibition by malonyl-CoA are due to differences in Ki values.

The hepatic carnitine palmitoyltransferase that is present on the outer surface of the mitochondrial inner membrane demonstrates hyperbolic substrate saturation curves with oleoyl-CoA in both fasted and fed rats. However, the addition of malonyl-CoA resulted in sigmoid substrate saturation curves, suggesting that malonyl-CoA induced the cooperative behavior. There was more of the outer carnitin...

متن کامل

Identification by mutagenesis of conserved arginine and glutamate residues in the C-terminal domain of rat liver carnitine palmitoyltransferase I that are important for catalytic activity and malonyl-CoA sensitivity.

Carnitine palmitoyltransferase I (CPTI) catalyzes the conversion of long chain fatty acyl-CoAs to acylcarnitines in the presence of l-carnitine. To determine the role of the conserved glutamate residue, Glu-603, on catalysis and malonyl-CoA sensitivity, we separately changed the residue to alanine, histidine, glutamine, and aspartate. Substitution of Glu-603 with alanine or histidine resulted i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 277 12  شماره 

صفحات  -

تاریخ انتشار 2002